Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity.

نویسندگان

  • N Mitsiades
  • W H Yu
  • V Poulaki
  • M Tsokos
  • I Stamenkovic
چکیده

Recent evidence suggests that one mechanism whereby cytotoxic drugs, such as doxorubicin, kill tumors is the induction or up-regulation of Fas ligand (FasL) expression on the tumor cell surface. The ensuing engagement of Fas by FasL on adjacent cells leads to apoptosis. However, despite cytotoxic drug-induced FasL expression, Fas-sensitive tumors frequently resist chemotherapy, suggesting that they may possess a mechanism that prevents or inactivates Fas-FasL interactions. In the present work, we addressed the involvement of the FasL/Fas signaling pathway in doxorubicin-induced apoptosis and the ability of matrix metalloproteinases (MMPs) to proteolytically cleave FasL in tumor cells. Doxorubicin-induced apoptosis was inhibited by expression of soluble Fas or incubation of the tumor cells with MMP-7 but not with MMP-2 or MMP-9. Resistance to doxorubicin was also induced by expression in the tumor cells of constitutively active MMP-7 but not of a catalytically inactive mutant. Conversely, inhibition of MMP-7 expression in tumor cells by transfection of MMP-7 cDNA in antisense orientation resulted in sensitization to doxorubicin. MMP-7 efficiently cleaved recombinant FasL in vitro and reduced cell surface FasL expression. Our observations provide evidence that one mechanism whereby MMP-7 may promote tumor survival and resistance to doxorubicin is by cleaving FasL and reducing its effectiveness in triggering Fas-mediated apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fas-mediated apoptosis in Ewing's sarcoma cell lines by metalloproteinase inhibitors.

BACKGROUND Fas ligand (FasL) is a transmembrane protein that induces apoptosis (programmed cell death) in susceptible cells by interacting with its receptor, Fas. Transmembrane FasL is cleaved by a metalloproteinase enzyme into a soluble form that is released into the extracellular medium. Tumors of the Ewing's sarcoma family express functional transmembrane FasL and release soluble FasL. This ...

متن کامل

Pristane-Induced Lupus Disease and Renal Pathology in Ligand (CD95L) Exacerbates Autoimmune Overexpression of Membrane-Bound Fas

Loss-of-function mutations in the Fas death receptor or its ligand result in a lymphoproliferative syndrome and exacerbate clinical disease in most lupus-prone strains of mice. One exception is mice injected with 2,6,10,14-tetramethylpentadecane (TMPD), a hydrocarbon oil commonly known as pristane, which induces systemic lupus erythematosus–like disease. Although Fas/Fas ligand (FasL) interacti...

متن کامل

The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis

BACKGROUND The Fas ligand/Fas receptor (FasL/Fas) system is an important mediator of apoptosis in the immune system where the juxtaposition of cells expressing the cell-surface ligand induces the apoptotic pathway in Fas-expressing lymphocytes. The FasL/Fas system has also been shown to be involved in apoptosis in epithelial tissues, including the involuting rodent prostate. FasL can be shed th...

متن کامل

Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity.

BACKGROUND The transmembrane receptor Fas, together with its protein-binding partner (Fas ligand), is a key regulator of programmed cell death (i.e., apoptosis). Fas and Fas ligand also influence the ability of cytotoxic T lymphocytes and natural killer cells to eliminate tumor cells. However, by inducing apoptosis in activated T cells, the Fas/Fas ligand system may protect some tumor cells fro...

متن کامل

Fas ligand (CD95L) protects neurons against perforin-mediated T lymphocyte cytotoxicity.

Previous work showed that neurons of the CNS are protected against perforin-mediated T cell cytotoxicity, but are susceptible to Fas-mediated apoptosis. In this study, we report that Fas ligand (FasL) expression by neurons is involved in protection against perforin-mediated T cell cytotoxicity. Gene transcripts for FasL were identified in single murine hippocampal neurons by RT-PCR combined wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2001